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Abstract

In this paper, we consider the notion of module homomorphisms in the general topological module setting and establish their
linearity and continuity under some suitable conditions. We also introduce the strict and uniform topologies on the modules of
continuous linear homomorphisms and study their various properties.
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1. Introduction

In [21,22], Rieffel made an extensive study of the Banach module HomA(A,X) of continuous homomorphisms.
Further results in this direction have been obtained by Sentilles and Taylor [25] and Ruess [24] in their study of
the general strict topology. More recently, Shantha [26] has studied homomorphisms in the case of locally convex
modules. The purpose of this paper is to investigate the extent to which some of the results of above authors are also
true in the non-locally convex setting of topological modules.

2. Preliminaries

An algebra A (over R or C) with a topology τ is called a topological algebra if it is a topological vector space (TVS)
in which multiplication is separately continuous. A complete metrizable topological algebra is called an F -algebra;
in this case the multiplication is jointly continuous by Arens’ theorem [16, p. 24]. A net {eλ: λ ∈ I } in a topological
algebra A is called a left approximate identity (respectively right approximate identity, two-sided approximate identity)
if, for all a ∈ A, limλ eλa = a (respectively limλ aeλ = a, limλ eλa = limλ aeλ = a); {eλ: λ ∈ I } is said to be uniformly
bounded if there exists r > 0 such that {( eλ

r
)n: λ ∈ I, n = 1,2, . . .} is a bounded set in A. A TVS (E, τ) is called

ultrabarrelled [7,9] if any linear topology τ ′ on E, having a base of neighbourhoods of 0 formed of τ -closed sets, is
weaker than τ. (E, τ) is called ultrabornological [11] if every linear map from E into any TVS which takes bounded
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sets into bounded sets is continuous. Every Baire TVS (in particular, F -space) is ultrabarrelled. Every metrizable TVS
is ultrabornological.

Let X be a topological vector space and A be a topological algebra, both over the same field K (= R or C).
Then X is called a topological left A-module if it is a left A-module and the module multiplication (a, x) → a.x

from A × X into X is separately continuous. If b(A) (respectively b(X)) denote the collection of all bounded sets
in A (respectively X), then module multiplication (a, x) → a.x is called b(A)-hypocontinuous (respectively b(X)-
hypocontinuous) [16, p. 28] if, given any neighbourhood G of 0 in X and any D ∈ b(A) (respectively B ∈ b(X)), there
exists a neighbourhood H of 0 in X (respectively V of 0 in A) such that D.H ⊆ G (respectively V.B ⊆ G). Clearly,
joint continuity ⇒ hypocontinuity ⇒ separate continuity; however, the converse need not hold. If E and X are TVSs,
BL(E,X) (respectively CL(E,X)) denotes the vector space of all bounded (respectively continuous) linear mappings
from E into X. Clearly, CL(E,X) ⊆ BL(E,X) with CL(E,X) = BL(E,X) if E is ultrabornological (in particular
metrizable). A mapping T :E → X is called a topological isomorphism if T is linear and a homeomorphism. If X is a
left A-module, then A is said to be faithful in X if, for any x ∈ X, a.x = 0 for all a ∈ A implies that x = 0 (cf. [12,25]).

This paper is a continuation of the author’s work done in [14], but it can be read independently. In the sequel,
all topological vector spaces, algebras and modules are assumed to be Hausdorff. For the general theory, the reader
is referred to [7,9,30] for topological vector spaces, [16,33] for topological algebras, and [3,6,32] for topological
modules.

The following result follows from [7, Theorem 7.7.3, p. 488], but we include its proof for reader’s convenience and
later reference.

Lemma 1. Let (X, τ) be a topological left A-module. If X is ultrabarrelled, then the module multiplication is b(A)-
hypocontinuous.

Proof. Let G be a neighbourhood of 0 in X and D ∈ b(A). For any a ∈ A, define La : X → X by La(x) = a.x, a ∈ A.
Clearly, each La is linear and also continuous (by separate continuity of the module multiplication). Further,
{La: a ∈ D} is pointwise bounded in CL(X,X). [Let x ∈ X and G1 a neighbourhood of 0 in X. Since D is bounded
in A, by separate continuity of the module multiplication, D.x is bounded in X and so there exists r > 0 such that
D.x ⊆ rG1. So {La(x): a ∈ D} = {a.x: a ∈ D} = D.x ⊆ rG1, showing that {La : a ∈ D} is pointwise bounded
in CL(X,X).] Since X is ultrabarralled, by the principle of uniform boundedness [7, p. 464], {La : a ∈ D} is equicon-
tinuous. Hence, given any neighbourhood G of 0 in X, there exists a neighbourhood H of 0 in X such that La(H) ⊆ G

for all a ∈ D; i.e. D.H ⊆ G �
If (X, τ) is a topological left A-module with A having a left approximate identity {eλ: λ ∈ I }, the essential part Xe

of X is defined as Xe = {x ∈ X: eλ.x
τ−→ x} [14,21]. Clearly, A.X ⊆ Xe and Xe is a topological left A-submodule

of X. We say that X is essential if X = Xe.

Lemma 2. Let (X, τ) be a topological left A-module with X ultrabarralled and A having a bounded left approximate
identity {eλ: λ ∈ I }. Then Xe is τ -closed in X.

Proof. (Cf. [14, Theorem 8].) Let x ∈ τ -cl(Xe). We need to show that eλ.x
τ−→ x. Let G be a neighbourhood of 0

in X. Choose a balanced neighbourhood H of 0 in X such that H + H + H ⊆ G. For each λ ∈ I , define Lλ : X → X

by Lλ(y) = Leλ(y) = eλ.y, y ∈ X. Since D = {eλ: λ ∈ I } is bounded in A, it follows from the proof of Lemma 1 that
{Lλ: λ ∈ I } is pointwise bounded and hence equicontinuous in CL(X,X). There exists a balanced neighbourhood H1
of 0 in X such that

Lλ(H1) ⊆ H for all λ ∈ I.

Since x ∈ τ -cl(Xe), we can choose xo ∈ Xe such that

x − xo ∈ H1 ∩ H.

Since eλ.xo → xo and so there exists λo ∈ I such that

eλ.xo − xo ∈ H for all λ � λo.
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Hence, for any λ � λo,

eλ.x − x = eλ.(x − xo) + (eλ.xo − xo) + (xo − x) ∈ Lλ(H1 ∩ H) + H + H1 ∩ H ⊆ H + H + H ⊆ G;
that is, eλ.x

τ−→ x and so x ∈ Xe. Hence Xe is τ -closed. �
We now state a generalization of the famous Cohen’s factorization theorem for later use. A topological algebra A

is called strongly factorable if, for any sequence {an} in A with an → 0, there exist b ∈ A and a sequence {cn} in A

with cn → 0 such that an = cnb for all n � 1. A topological left A-module of X is called A-factorable if, for each
x ∈ X, there exist a ∈ A and y ∈ X such that x = a.y. Following Ansari–Piri [2], a TVS X is called fundamental if
there exists a constant M > 1 such that, for every sequence {xn} in X, the convergence of Mn(xn+1 − xn) to 0 in X

implies that {xn} is a Cauchy sequence in X. Every locally convex and every locally bounded TVS is fundamental.

Theorem 1. (See [2].) Let A be a fundamental F -algebra with a uniformly bounded left approximate identity. Then:

(i) A is strongly factorable.
(ii) If X is an F -space which is an essential topological left A-module, then X is A-factorable.

We mention that if X is A-factorable, then X is essential since X = A.X ⊆ Xe ⊆ X, or that X = Xe.

Definition 1. Let E and X be topological left A-modules, where E and X are TVSs and A is a topological algebra.
Then a mapping T : E → X is called an A-module homomorphism if T (a.x) = a.T (x) for all a ∈ A and x ∈ E

[21, p. 447]. (Similarly, if E and X are right A-modules, then we can define an A-module homomorphism as a
mapping T : E → X satisfying T (x.a) = T (x).a for all a ∈ A and x ∈ E. We will state results for left modules
over A, similar results holding, of course, for right modules.) At this stage, a module homomorphism is not assumed
to be linear or continuous.

Our main interest is the study of A-module homomorphisms from A into X. The following algebraic result is an
extension of [12, Theorem 7].

Lemma 3. Let X be a left A-module. Suppose that A is faithful in X. Then any A-module homomorphism T : A → X

is homogeneous (that is, T (λa) = λT (a) for all λ ∈ K and a ∈ A).

Proof. Let a ∈ A and λ ∈ K. Then, for any c ∈ A,

c.T (λa) = T
(
c.(λa)

) = T
(
(λc)a

) = (λc).T (a) = c.λT (a).

Since A is faithful in X, T (λa) = λT (a). �
We now establish the linearity and continuity of an A-module homomorphisms using the factorization theorem.

The following theorem extends some results in [13,15,23,27] to our more general setting.

Theorem 2. Let X be a topological left A-module with X metrizable and A strongly factorable. Then any A-module
homomorphism T : A → X is linear and continuous.

Proof. To show that T is linear, let a1, a2 ∈ A and α,β ∈ K. If we take {an} = {a1, a2,0,0, . . .}, then clearly an → 0;
since A is strongly factorable, there exist b, c1, c2 ∈ A such that a1 = c1b, a2 = c2b. So

T (αa1 + βa2) = T
(
(αc1 + βc2)b

) = (αc1 + βc2).T (b) = αT (c1b) + βT (c2b) = αT (a1) + β(a2);
hence T is linear. Since X is metrizable, to show that T is continuous, it suffices to show that if {an} ⊆ A with an → 0,
then T (an) → 0. Using again the strong factorability of A, we can write an = cnb, where b ∈ A and {cn} ⊆ A with
cn → 0. Then

T (an) = T (cnb) = cn.T (b) → 0.T (b) = 0

(by the separate continuity of module multiplication). Thus T is continuous. �
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3. The topological module HomA(A,X)

Definition 2. (See [21, p. 447].) Let E and X be topological left A-modules, where E and X are TVSs and A is a
topological algebra. Let HomA(E,X) denote the vector space of all continuous linear left A-module homomorphisms
of E into X. If E is an A-bimodule, then defining (a ∗ T )(x) = T (x.a), HomA(E,X) becomes a left A-module. In
fact, for any b ∈ A,x ∈ E,

(a ∗ T )(b.x) = T
(
(b.x).a

) = T
(
b.(x.a)

) = b.T (x.a) = b.(a ∗ T )(x).

In particular, HomA(A,X) is a left A-module. Note that if A is commutative, then defining (T ∗ a)(x) = T (a.x),

HomA(E,X) becomes a right A-module.

We mention that HomA(E,X) has been extensively studied in the case of E and X as the Banach modules of
Banach-valued function spaces L1(G,A) and Co(G,A), where G is a locally compact abelian group and A is a
commutative Banach algebra (see, e.g., [8,17,20–22,28]). More recently, Abel [1] has studied it in the setting of
topological bimodule-algebras. If E = X = A, then HomA(A,A) is the usual multiplier algebra of A, and is denoted
by M(A). In fact, there is a vast literature dealing with the notions of left multiplier, right multiplier, multiplier and
double multiplier (see, e.g., [5,10,12,13,15,18,29]).

Lemma 4. (Cf. [21, p. 455].) Let E and X be topological left A-modules with A having an approximate iden-
tity {eλ: λ ∈ I }. If E is an essential A-module, then HomA(E,X) = HomA(E,Xe). In particular, HomA(A,X) =
HomA(A,Xe).

Proof. Since Xe ⊆ X, clearly HomA(E,Xe) ⊆ HomA(E,X). Now let T ∈ HomA(E,X). Then, for any x ∈ E, since
eλ.x → x,

lim
λ

eλ.T (x) = lim
λ

T (eλ.x) = T (x).

Therefore T (x) ∈ Xe, i.e. T ∈ HomA(E,Xe). �
Definition 3. Let A be a Hausdorff topological algebra and (X, τ) be a Hausdorff TVS which is a topological left A-
module and has a base WX of neighbourhoods of 0 in X. The topology of bounded convergence u = uA (respectively
the topology of pointwise convergence p = pA) on HomA(A,X) is defined as the linear topology which has a base of
neighbourhood of 0 consisting of all sets of the form

M(D,G) = {
T ∈ HomA(A,X): T (D) ⊆ G

}
,

where D is a bounded (respectively finite subset) of A and G ∈WX . Clearly, p � u.

Further, we obtain

Lemma 5. Let (X, τ) be a topological left A-module with b(A)-hypocontinuous module multiplication. Then both
(HomA(A,X),u) and (HomA(A,X),p) are topological left A-modules.

Proof. We prove the result only for (HomA(A,X),u). For any a ∈ A and T ∈ HomA(A,X), the map (a, T ) → a ∗T

is separately continuous, as follows. First, let {aα: α ∈ J } be a net in A with aα → a ∈ A, and let D be a bounded
subset of A and G ∈ WX . By A-hypocontinuity, there exists a balanced H ∈ WX such that D.H ⊆ G. Since T is
continuous, there exists αo ∈ J such that

T (aα) − T (a) ∈ H for all α � αo.

Now, for any b ∈ D and α � αo,

(aα ∗ T − a ∗ T )(b) = T (baα) − T (ba) = b.
[
T (aα) − T (a)

] ∈ D.H ⊆ G;
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that is, aα ∗T −a ∗T ∈ M(D,G) for all α � αo. Hence aα ∗T
u−→ a ∗T . Next, let {Tα: α ∈ J } be a net in HomA(A,X)

with Tα
u−→ T ∈ HomA(A,X), and let D be a bounded subset of A and G ∈ WX . Since the map Ra : A → A

given by Ra(b) = ba, b ∈ A, is linear and continuous (by separate continuity of multiplication in A), it follows
that Ra(D) = Da is bounded in A. Since Tα

u−→ T , there exists αo ∈ J such that

Tα − T ∈ M(Da,G) for all α � αo.

Now, for any b ∈ D and α � αo,

(a ∗ Tα − a ∗ T )(b) = (Tα − T )(ba) ∈ G;
that is, a ∗ Tα − a ∗ T ∈ M(D,G) for all α � αo. Hence a ∗ Tα

u−→ a ∗ T . �
The following results generalize some results of [5,15,19,31] to modules of continuous homomorphisms.

Theorem 3. Let X be a topological left A-module. Then:

(i) If X is an F -space and A is strongly factorable, then both (HomA(A,X),u) and (HomA(A,X),p) are complete.
(ii) If X is complete and A is ultrabarrelled having a bounded approximate identity, then both (HomA(A,X),p) and

(HomA(A,Xe),p) are complete.

Proof. (i) Let {Tα: α ∈ J } be a u-Cauchy net in HomA(A,X). Since p � u, {Tα: α ∈ J } is a p-Cauchy net
in HomA(A,X); in particular, for each a ∈ A, {Tα(a)} is a Cauchy net in A. Consequently, by completeness of X, the
mapping T : A → X, given by T (a) = limα Tα(a) (a ∈ A), is well defined. Further, for any a, b ∈ A,

T (ab) = lim
α

Tα(ab) = lim
α

a.Tα(b) = a.T (b).

Since X is metrizable and A strongly factorable, by Theorem 2, T ∈ HomA(A,X). We now show that Tα
u−→ T . Let

D be a bounded subset of A and take closed G ∈WX . There exists an index αo such that

Tα(a) − Tγ (a) ∈ G for all a ∈ D and α,γ � αo.

Since G is closed, fixing α � αo and taking limγ , we have

Tα(a) − T (a) ∈ G for all a ∈ D.

Hence, for any α � αo, Tα − T ∈ M(D,G). Thus (HomA(A,X),u) is complete. By a similar argument,
(HomA(A,X),p) is also complete.

(ii) We first show that HomA(A,X) is p-complete. Let {Tα: α ∈ J } be a p-Cauchy net in HomA(A,X). Then, for
each a ∈ A, {Tα(a): α ∈ J } is a Cauchy net in Xe and hence in X for all a ∈ A. Since (X, τ) is complete, {Tα(a)}
is convergent for all a ∈ A. Define T : A → X by T (a) = limα Tα(a)}, a ∈ A. Then T is a left A-module homomor-
phism. Also {Tα: α ∈ J } is pointwise bounded. Since A is ultrabarrelled, by the principle of uniform boundedness,
{Tα: α ∈ J } is equicontinuous. Therefore, given any closed G ∈ WX, there exists a neighbourhood U of 0 in A such
that

Tα(U) ⊆ G for all α ∈ J ; that is,
⋃
α∈J

Tα(U) ⊆ G.

If a ∈ U,Tα(a) ∈ Tα(U) ⊆ G. Therefore, {Tα(a): α ∈ J } is a net in G for all a ∈ U. Thus T (a) = limα Tα(a) ∈
cl-G = G; that is, T (U) ⊆ G. Therefore T : A → X is continuous, and so T ∈ HomA(A,X). Thus HomA(A,X) is
p-complete. Since A has an approximate identity, by Lemma 4, HomA(A,X) = HomA(A,Xe). Hence HomA(A,Xe)

is also p-complete. �
Definition 4. For any x ∈ X, define Rx : A → X by Rx(a) = a.x, a ∈ A. Clearly, Rx is linear and continuous (by
separate continuity of module multiplication); further, for any a, b ∈ A,

Rx(ab) = (ab).x = a.(b.x) = a.Rx(b),
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so that Rx ∈ HomA(A,X). Consider a map μ : X → HomA(A,X), given by μ(x) = Rx,x ∈ X. It is easily seen that
μ(X) = {Rx : x ∈ X} is a left A-submodule of HomA(A,X). [In fact, for any a ∈ A and x ∈ X,

(a ∗ Rx)(b) = Rx(ba) = b.(a.x) = Ra.x(b), b ∈ A,

so that a ∗ Rx ∈ HomA(A,X).]

Theorem 4. Let X be a topological left A-module with A having a two-sided approximate identity {eλ: λ ∈ I }. Then
μ(Xe) is p-dense in HomA(A,Xe); in particular, μ(X) is p-dense in HomA(A,Xe).

Proof. Let T ∈ HomA(A,Xe). For each λ ∈ I, define xλ = T (eλ). Then

lim
γ

eγ .xλ = lim
γ

eγ .T (eλ) = lim
γ

T (eγ eλ) = T (eλ) = xλ,

and so xλ ∈ Xe. Now, for any a ∈ A, a.xλ = a.T (eλ) = T (aeλ) → a; hence

μ(xλ)(a) = Rxλ(a) = a.xλ = a.T (eλ) = T (aeλ) → T (a).

Therefore μ(xλ)
p−→ T . Thus T ∈ p-cl[μ(Xe)]; that is, μ(Xe) is p-dense in HomA(A,Xe). �

Remark 1. Note that μ(X) need not be u-closed in HomA(A,X) even if X = A is a metrizable locally C∗-algebra
(see [18, p. 187]) or a Banach algebra [31, p. 1138]. However, if X = A is a B∗-algebra or, more generally, an F -
algebra whose topology is generated by a submultiplicative F -norm q (cf. [33, p. 8]) such that q(eλ) = 1 for all λ ∈ I,

then μ : A → (HomA(A,A),u) is an isometry, as follows: Let x ∈ X = A. Then

‖Rx‖q = sup
a 
=0

q(Rx(a))

q(a)
= sup

a 
=0

q(ax)

q(a)
� sup

a 
=0

q(a)q(x)

q(a)
= q(x).

On the other hand,

‖Rx‖q = sup
a 
=0

q(ax)

q(a)
� q(xeλ)

q(eλ)
� q(xeλ) for all λ ∈ I ;

so

‖Rx‖q � lim
λ

q(eλx) = q
(

lim
λ

eλx
)

= q(x).

Hence ‖Rx‖q = q(x). Therefore μ is an isometry; hence A is u-closed in HomA(A,A).

To study further properties of the map μ : X → HomA(A,X), we need to consider the strict topology β = βA

on X, defined originally by Sentilles and Taylor [25] and studied recently in [14,26].

Definition 5. Let (X, τ) be a topological left A-module, where A is a topological algebra, and let WX be a base
of τ -neighbourhoods of 0 in X. For any bounded set D ⊆ A and G ∈ WX , we set

N(D,G) = {x ∈ X: D.x ⊆ G}.
The uniform topology τ ′ = τ ′

A (respectively general strict topology β = βA) on X is defined as the linear topology
which has a base of neighbourhoods of 0 consisting of all sets of the form N(D,G), where D is a bounded (respec-
tively finite) subset of A and G ∈WX .

It is shown in [14] that (i) β � τ ′; (ii) if the module multiplication is b(A)-hypocontinuous (in particular, X is
ultrabarrelled), then τ ′ � τ ; (iii) if A has a two-sided approximate identity (and (X, τ) is Hausdorff), then β and τ ′
are Hausdorff. Note that, for any bounded set D ⊆ A and G ∈ WX , we have

M(D,G) ∩ μ(X) = {
T ∈ HomA(A,X): T (D) ⊆ G

} ∩ μ(X) = {
Rx : x ∈ X, Rx(D) ⊆ G

} = μ
(
N(D,G)

);
hence τ ′ is the topology of bounded convergence of HomA(A,Xe) induced on X under the algebraic embedding μ.
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Considering Y = HomA(A,X) as a left A-module, we can also define the strict topology β = βA on HomA(A,X)

as the linear topology which has a base of neighbourhoods of 0 consisting of all sets of the form

N(D,G) = {y ∈ Y : D ∗ y ⊆ G},
where D is a finite subset of A and G ∈ WY . We mention that if X = A = Co(S) with S a locally compact Hausdorff
space, then A is a commutative Banach algebra having a bounded approximate identity and HomA(A,A) = M(A) =
Cb(S) [31]. In this case, β is the original strict topology on Cb(S) introduced by R.C. Buck [4] in 1958.

In the remaining part of this paper, we investigate the completeness of both (X,β) and (HomA(A,X),β). These
results extend the corresponding results of [15,24–26].

Theorem 5. Let X be a topological left A-module with A having a two-sided approximate identity {eλ: λ ∈ I }. If
(X,β) is complete, the map μ : X → HomA(A,Xe) defined by μ(y) = Ry,y ∈ X, is onto.

Proof. By Theorem 4, μ(X) is p-dense in HomA(A,Xe). We now show that μ(X) is p-closed in HomA(A,Xe). Let
T ∈ p-clμ(X). There exists a net {xα: α ∈ J } ⊆ X such that Rxα

p−→ T . Then {xα: α ∈ J } is β-Cauchy in X. [Let
D be a finite subset of A and G ∈ WX . Choose a balanced H ∈ WX with H + H ⊆ G. Since Rxα

p−→ T , there exists
αo ∈ I such that for all α � αo,

Rxα − T ∈ N(D,H) or Rxα (a) − T (a) ∈ H for all a ∈ D.

Then, for any a ∈ D and α,γ � αo,

a.xα − a.xγ = [
Rxα (a) − T (a)

] + [
T (a) − Rxγ (a)

] ∈ H + H ⊆ G.]
Since (X,β) is complete, xα

β−→ xo, xo ∈ X. Hence Rxα

p−→ Rxo . By uniqueness of limit in Hausdorff spaces, T =
Rxo ∈ μ(X). Thus μ(X) = HomA(A,Xe). �
Theorem 6. Let X be a left A-module with X complete and A ultrabarrelled having a bounded approximate identity.
If the map μ : X → HomA(A,Xe) is onto, then (X,β) is complete.

Proof. Let {xα} be a β-Cauchy net in X. Therefore {Rxα } is a p-Cauchy net in HomA(A,Xe). By Theorem 3,
HomA(A,Xe) is p-complete, and so Rxα

p−→ T in HomA(A,Xe). Since μ is onto, there exists xo ∈ X such that
T = Rxo . Therefore Rxα

p−→ Rxo . Now, let D be a finite subset of A and G ∈ WX . Since Rxα

p−→ Rxo, there exists
αo ∈ I such that for all α � αo,

Rxα − Rxo ∈ M(D,G) or xα − xo ∈ N(D,G).

Hence xα
β−→ xo, and so (X,β) is complete. �

Theorem 7. Let (X, τ) be a topological left A-module with b(A)-hypocontinuous module multiplication. Suppose
(X, τ) is complete and A has a bounded approximate identity {eλ: λ ∈ I }. Then ([HomA(A,Xe)]e, u) is topologically
isomorphic to (Xe, τ ).

Proof. We first show that, for any x ∈ Xe, Rx ∈ [HomA(A,Xe)]e, or equivalently that eλ ∗ Rx
u−→ Rx. Let D be a

bounded subset of A and take closed G ∈ WX . By b(A)-hypocontinuity, there exists a balanced H ∈ WX such that
D.H ⊆ G. Since x ∈ Xe, eλ.x → x and so there exists λo ∈ I such that

eλ.x − x ∈ H for all λ � λo.

Hence, for any a ∈ D and λ � λo,

(eλ ∗ Rx − Rx)(a) = Rx(aeλ − a) = (aeλ − a).x = a.(eλ.x − x) ∈ D.H ∈ G.

Thus Rx ∈ [HomA(A,Xe)]e.
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In view of the above, we can define a map μ : Xe → [HomA(A,Xe)]e by μ(x) = Rx,x ∈ Xe. Clearly, μ is linear.
To see that μ is one–one, let x ∈ Xe with μ(x) = 0. Since eλ.x → x,

x = lim
λ

eλ.x = lim
λ

Rx(eλ) = lim
λ

μ(x)(eλ) = 0.

To show that μ is onto, let T ∈ [HomA(A,Xe)]e. Since eλ ∗ T
u−→ T , {eλ ∗ T : λ ∈ I } is a u-Cauchy net

in [HomA(A,Xe)]e . Now {T (eλ): λ ∈ I } is a τ -Cauchy net in X. [Let G ∈ WX be closed. If D = {eλ: λ ∈ I },
a bounded set in A, then M(D,G) is a u-neighbourhood of 0 in [HomA(A,Xe)]e; hence there exists λo ∈ I such that

eλ ∗ T − eγ ∗ T ∈ N(D,G) for all λ,γ � λo.

Then, for any α ∈ I ,

eα.
[
T (eλ) − T (eγ )

] = T (eαeλ) − T (eαeγ ) = (eλ ∗ T − eγ ∗ T )(eα) ∈ G for all λ,γ � λo.

Therefore T (eλ) − T (eγ ) ∈ Xe; hence eα.[T (eλ) − T (eγ )] → T (eλ) − T (eγ ) and then

T (eλ) − T (eγ ) ∈ cl-G = G for all λ,γ � λo.

This shows that {T (eλ): λ ∈ I } is a τ -Cauchy net in Xe and hence in X.] Since (X, τ) is complete, limλ T (eλ) = z

exists in X. For any γ ∈ I ,

eγ .z = eγ . lim
λ

T (eλ) = lim
λ

eγ .T (eλ) = lim
λ

T (eγ eλ) = T (eγ );
hence limγ eγ .z = limγ T (eγ ) = z, showing that z ∈ Xe. Now, for any a ∈ A,

T (a) = lim
λ

T (aeλ) = lim
λ

a.T (eλ) = a.z = Rz(a).

Consequently, T = Rz = μ(z), and so μ is onto.
To prove that μ is continuous, let {xα: α ∈ J } be a net in Xe with xα

τ−→ x ∈ Xe, and let D be a bounded subset
of A and G ∈ WX . By b(A)-hypocontinuity, there exists H ∈ WX such that D.H ⊆ G. Since xα

τ−→ x, there exists
αo ∈ J such that

xα − x ∈ H for all α � αo.

Then, for any a ∈ D and α � αo,
[
μ(xα) − μ(x)

]
(a) = [Rxα − Rx](a) = a.(xα − x) ∈ D.H ∈ G;

that is, μ(xα) − μ(x) ∈ M(D,G), and so μ is continuous.
To prove that μ is open, let W be any open set in Xe and let S ∈ μ(W).Then there exists y ∈ W such that S =

μ(y) = Ry. Since W is open, there exists a closed G ∈ WX such that

y ∈ y + G ∩ Xe ⊆ W.

Now, if D = {eλ: λ ∈ I }, a bounded set in A, then M(D,G) is a u-neighbourhood of 0 in [HomA(A,Xe)]e . We claim
that

S + M(D,G) ⊆ μ(W).

[Let T ∈ S + M(D,G). Using the argument in proving μ is onto, we can write T = Rz, where z = limλ T (eλ). Since
T − S ∈ M(D,G), for any λ ∈ I,

eλ(z − y) = Rz(eλ) − Ry(eλ) = T (eλ) − S(eλ) ∈ G.

Therefore

z − y = lim
λ

eλ(z − y) ∈ cl-G = G.

Hence z ∈ y + G ⊆ W. Therefore T = Rz = μ(z) ∈ μ(W).] Hence μ(W) is open in [HomA(A,Xe)]e. Thus
[HomA(A,Xe)]e ∼= Xe . �
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Theorem 8. Let (X, τ) be a topological left A-module with b(A)-hypocontinuous module multiplication. Suppose
(X, τ) is complete ultrabarrelled and A is ultrabarrelled and ultrabornological as a TVS and has a uniformly bounded
two-sided approximate identity {eλ: λ ∈ I }. Then (HomA(A,Xe),β) is complete.

Proof. Let Y = HomA(A,Xe). Since X ultrabarralled and A has a bounded left approximate identity, by Lemma 2,
Xe is τ -closed and hence τ -complete. Then, by [7, p. 87], BL(A,Xe) is u-complete. Since A is ultrabornological,
BL(A,Xe) = CL(A,Xe) and so it follows that Y = HomA(A,Xe) is u-complete. Then, by Theorem 7, the map
μ : Xe → [HomA(A,Xe)]e = Ye given by μ(x) = Rx,x ∈ Xe, is a topological isomorphism. We observe that given
T ∈ Ye, there exists z ∈ Xe, z = limλ T (eλ) and T = Tz.

Define a map σ : Y → HomA(A,Ye) by σ(T )(a) = a ∗ T ,a ∈ A,T ∈ Y. We need to show that σ is onto. Let
S ∈ HomA(A,Ye). Then S(a) ∈ Ye for all a ∈ A. Define R : A → Xe by

R(a) = lim
λ

S(a)(eλ), a ∈ A.

We claim that R ∈ HomA(A,Xe). [Since S(a) ∈ Ye, limλ S(a)(eλ) exists in Xe . Clearly, R is linear. Further:

R(ab) = lim
λ

S(ab)(eλ) = lim
λ

[
a.S(b)

]
(eλ) = lim

λ
S(b)(eλa) = S(b)(a),

a.R(b) = a. lim
λ

S(b)(eλ) = lim
λ

a.S(b)(eλ) = lim
λ

S(b)(aeλ) = S(b)(a);
hence R is a left A-homomorphism of A into Xe . We next show that R is continuous. First, for each λ ∈ I, define
Sλ : A → Xe by

Sλ(a) = S(a)(eλ), a ∈ A.

Clearly, each Sλ is a linear map; further, by continuity of S and separate continuity of module multiplication, Sλ is also
continuous. Now R(a) = limλ S(a)(eλ) = limλ Sλ(a) and A is ultrabarrelled, it follows from uniform boundedness
principal that R is continuous. Therefore R ∈ HomA(A,Xe).]

We now show that σ(R) = S. Let a ∈ A. Then, for any b ∈ A,

σ(R)(a)(b) = (a ∗ R)(b) = R(ba) = b. lim
λ

S(a)(eλ) = lim
λ

b.S(a)(eλ) = lim
λ

S(a)(beλ) = S(a)(b).

Thus σ : Y → HomA(A,Ye) is onto. Consequently, by Theorem 6, (Y,β) is complete. �
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