K.A.U.: Sci., vol. 2, pp. 117-136 (1410 A.H./ 1990 A.D.)

CITALOG
Compact and Integrated Tasim Logic Closure

FeEvzi UNLU
Department of Computer Science,
King Abdulaziz University,
Jeddah, Kingdom of Saudi Arabia.

ABSTRACT. A two-valued logic software minimizing, Compact and Integ-
rated TASIM Logic (CITALOG) closure has been developed for realizing
logical operators and Boolean functions of any finite number of operands
and any finite number of variables under the well-defined construction and
operating rules of TASIM in order to find the self minimizing software de-
signs of the hardware structures in the Logic Design.

Introduction

Regular expressions and their finite-state transducers are two important notions in
the theory of computationlll. The notion of classical logic is well known by the refer-
ences of [1, 2, 5, 6] recorded in Ref.[2l. We know that over the last two or three de-
cades, computer hardware has undergone dramatic cost reduction by the application
of the classical logic to the fundamental parts of hardware designl®l. This has not been
accompanied by corresponding reductions in the software cost of computing sys-
tems. Software developments still takes ~ 75% of the total computing system budget
in our time, compared with 5% in the 1950’s. Hence, we need a new technique for
software minimization. For this reason, a Tidy Automatic Sequential Information-
processing Mechanism, which is called TASIM, was developed(24l. It is a functional
high-level formal language for creating and realizing TASIM definable regular ex-
pressions and their finite-state transducers as software in a TASIM closure tC. Some
logic operators in the closure of unary and binary logic operators were realized by
TASIM245], Some algebraic data structures were studied in terms of TASIMI®.. A
notion of TASIM logic was developed and used for the realization of Boolean

Permanent address: Kazim Dirik Mahallesi, Mustafa Kemal Caddesi, 231 Sokak No. 2/6, Bornova,
Izmir, Turkey.

117

118 Fevzi Unh

Algebra. Syntax, semantics and pragmatics of a TASIM closure tC over an alphabet
AA are formalized!”!. TASIM logic realizations of (a) a generalized TASIM multip-
lex, (b) compact and integrated TASIM flip-flop closures for software designs of
hardware structures, and (c) TASIM storage closure were developed!®l. The notion
of high level programming languages can be found in Ref.9),

In this paper, the author is studying a two-valued logical software minimizing,
Compact and Integrated TASIM Logic (CITALOG) closure %tC as a subset of a
TASIM closure tC over an alphabet AA for realizing logical operators of any finite
number of operands, and Boolean functions of any finite number of variables in
order to find the software designs of hardware structures in the logic design. For this,
all necessary rules of minimizations were introduced into TASIM for minimizing a
TASIM program automatically in The %tC.

Four sections follow this section. In section two we introduce the notations used in
the article and give their meanings. In section three we present the notion of
CITALOG closure. Section four is on applications. Section five is on the conclusion.
An appendix is added to this paper. One can find a table for all logic operators in the
unary operator closure, and also a table for all logic operators in the binary logic
operator closure of the Logic Design in this appendix.

Notations Used and Their Meanings

C Proper subset symbol. If A C B, then A is a proper subset
of B.

- Subset symbol. If A C B, then A is a subset of B.

< Symbol of “less than” operator.

= Symbol of “equal or less than” operator.

> Symbol of “greater than” operator.

= Symbol of “greater or equal” operator.

<..> String terminators in BNF grammar.

P The set of positive numbers, P={1,2,... }.

P[n] The set of positive numbersup ton, P[n] ={1,2,...,n}.

N The set of natural numbers, N={0,1,2,...}.

N[n] The set of natural numbersup ton, N[n] ={0, 1, ... ,n}.

AA A none empty and finite alphabet of TASIM closure, where
AA:=<aS,aL,alLCln],aT> = <aS>|<aL>|
<aL(C[n]>|<aT>.

as, %aS None empty and finite alphabets of special symbols such
that %aS C aS.

aL, Y%alL None empty and finite alphabets of letters such that
%aL CalL.

aLC[k], Y%aLClj] Positive closures of aL and %aL up to length k andj.

aT, %aT Finite alphabets of special reserved TASIM-names such
that %aT C aT.

tC, %tC TASIM closure and CITALOG closure on an alphabet AA

such that %tC C ¢C.

ux

sGli], G[i]

Uln]

UC|n]
1n]

CITALOG
x[n]
x[n+1]

Citalog 119

A special symbol in aT for representing the notion of a
2-valued ivasmode (initial and final value space mode).
Open parenthesis used as a special symbol in aS.

Close parenthesis used as a special symbol in aS.

A pair of parentheses used as a binary symbol for grouping
the construction levels of a TASIM. Itis alsoused asa
generalized instruction-operator in the TASIM closure ¢C.
A special symbol in aS$ for the complete substitution
operator.

A special symbol in aS for the reduction and expansion
operator in a TASIM closure tC, in the sense of equivalence.
A special symbol in aS for supervising a variable in a
functional TASIMin ¢tC.

A special string called as supervisor in a functional TASIM
ux.G, where u is a supervisor and supervises x by making it
a dependent variable in a TASIM functional body G.

A pseudo symbol for representing the body of a functional
TASIM.

A special symbol in aS for representing the generalized
substitution operator in a TASIM closure ¢C.

The generalized substitution operator for substituting each
independent x by y in a TASIM appearing after in the same
level with xSy@, where ‘@’ is a special symbol in aS$ for
representing empty word separator.

A special symbol in aT for representing the notion of the
falsity in the human thought and it has a functional TASIM
representation ux[1]ux[2]. x[2] in this paper.

A special symbol in aT for representing the notion of the
truth in the human thought and it has a functional TASIM
representation ux[1]ux[2]. x[1] in this paper.

Two instructional TASIMs were used for representing the
bodies of some functional TASIMs in the definition of a
CITALOG closure. They are logical variables taken from
aLC[n] and assume functional TASIMs as valuesin a

TASIM closure tC.
An n-ary and two-valued CITALOG operator in %¢C for

nisin P.

CITALOG operator closure in %¢Cfor nisin P.

An n-ary instruction in the two-valued CITALOG closure
%tCfornisinP.

Two-valued CITALOG instruction closure in %tCfor nisin
P.

Compact and Integrated TAsim LOGic.

The nth CITALOG variable fornisin P.

The [n+1]th CITALOG variable for nisin P.

120 Fevzi Unlii

Two-Valued CITALOG Closure

In this section we define a two-valued self minimizing ‘Compact and Integrated
TASIM Logic (CITALOG) closure’ and study its properties.

Definition 1

Let tCbe a TASIM closure on an alphabet AA = <aS, aL, aLClk], aT> and %:C
be a TASIM closure on an alphabet % AA = <%aS$, %aL, %aLClj], %aT> such
thatj =k, %aS CaS, %al CaL, %alClj] C aLC[k] and %aT C aT. If %tC satisfies
the following laws then it is called a two-valued CITALOG closure:

L1: A two-valued CITALOG closure has two distinct elements F and T in %aT
implies that F and T are in aT.

L2: A two-valued CITALOG closure has realizations of the two distinct elements
F and T in an ivasmode V as V = { F:= ux[1]ux[2].x{2], T:= wx[1]ux[2].x[1] }
such that V C %¢C implies that V C ¢C for x[1] and x[2] are two TASIM variables in
%aL C[j] and u is a supervisor in %aS.

L3: Let x[0], x[1], ..., x[n] be n + 1 TASIM variables taken from %aLC[j] and
(0], c[1], ..., c[m], m = 2" — 1 be names for constant data objects also taken from
%aLC[j] assuming values on V.

(a) (B1) If G[1] = ((x[1]@c[1])c[0]) then U[1] := ux[1].G[1] is called a unary

CITALOG operator in %tC.

(B2) M sG[n-1] = c[i]Sclii]@G[n-1] for n = 2 and all ¢[i] in G[n-1], then
Uln] = ux[n] ... ux{2]ux[1}.GJ[n] is called an n-ary and two-valued CITALOG
operator in %¢C. Where ii = i + 2"~ ! and G[n] = ((x[n]@sG[n-1)]) G[n-1)).

(b) UC[n] ={ U[n] : nisin P}is called a two-valued CITALOG operator clo-
sure in %tC.
(c) UC[n] in %¢C implies that UC[n] is in ¢C.

L4: Lety[1], y[2], ..., y[n] be n variable taken from %aL C[j] and used for naming
software data objects that contain CITALOG creating or representing propositional
TASIMs on the ivasmode V C %tC, for nisin P.

(a) () M) = Ul@yl1]) = (ux(1]-G[1]@y[1]) = x[1]Sy[1]@G[1] is called a

unary instruction in the two-valued CITALOG closure %!tC forn = 1.

(i) fIn] = ((...(UInJ@y[1]y[2] ... y[o-1]y[n]) = ((...(ux[n]ux{n-1]...
wx2]ux(1].G[n].@y[1D)yl2]...yln-1D)y[n]) = x[n]Sy[n]@x[n-1]Sy[n-1] @...x[1]
Sy[1]@G]n] is called an n-ary instruction in the two-valued CITALOG closure
%tC forn = 2.

(b) IC[n] ={I|n] : nisin P }is called a two-valued CITALOG instruction clo-
sure in %tC.
(c) ICInlis in %tC implies that IC[n] is in ¢C.

Citalog

Theorem 1 (Fundamental Theorem 1)

Let %tC be a CITALOG closure. If Q and R any two arbitrary TASIMs in tC
which do not contain the bodies of T and Fin V as independent variables, then :

(a) (T@R)Q) =R,
(b) (F@R)Q) = Q.
Proof

Let %tC be a CITALOG closure. Let Q and R be two arbitrary TASIMs in tC
satisfying conditions in the hypothesis of the theorem, then :

(@) (T@R)Q) = ((ux{1]ux]2].x[1]@R)Q)
- = x[1]SR@x[2]SQ@x(1]
= R,
(®) (F@R)Q) = ((wx[1]ux[2]-x[2]@R)Q)
= x[1]SR@x[2]SQ@x[2]
= Q.

Theorem 2 (Fundamental Theorem 2)

Let %tC be a two-valued CITALOG closure. If x and y are two arbitrary
CITALOG variables on the two-valued ivasmode V = { F, T}and x’ and y’ are their

complements on V, then the following self minimizings exist in the two-valued

CITALOG closure %!tC.
(1) (x@F)F)
() (x@F)T)
(3) (x@F)x)
(4) (x@F)x")
() (x@D)F)
(6) (x@N)T)
(7) (x@T)x)
(8) (x@7)x")
() (x@x)F)
(10) ((x@x)7)
(11) ((x@x)x)
(12) ((x@x)x")
(13) ((x@x")F)
(14) ((x@x")T7)
(15) ((x@x')x)
(16) ((x@x')x')
(17) (¥’ @F)F)
(18) (*'@F)T)
(19) ((*'@F)x)
(20) ((x'@F)x’)
@1 ('@D)F)

- ™

I

N R RN

-

-

SN R R R

m

I | | R | | | | (e (e (' T (I |
Xa

~

=

122 Fevzi Unlii

22) (@@NT) = T,
(23) (@) = T,
(24) (F@T') = x,
(25) (x@x)F) = F
(26) (x¥@x)T) = x,
@7 (¥@x)x) = «x
(28) (x'@x)x’) = F,
(29) (¥@x')F) = x',
(30) (x'@x)T) = T,
(31) ((x'@x")x) = T,
(32) (r@x)x) = x,
(33) (x@y)y) =y,
(34) (k@y'y) = ',
(35 (F@yy) =

(36) ((x'@y")y") y'

Proof

Let %tC be a CITALOG closure. Let x and y be two CITALOG variables on the
ivasmode V.= { T, F}and x’ and y' be their complements on V. Using the substitution
rules of TASIM and the first Fundamental Theorem 1, we obtain :

(1) (i) Forx F, (x@F)F) = ((F@F)F) = F.
(ii) For x T, (k@PF) = ((T@FF) = F.
Hence, (x@F)F) = Fis true for all possible values of x on V.
(2) (i) Forx E, (x@RT) = (F@FH)T) =T = x'
. (ii) Forx T, (k@P)T) = (T@RAT) =F = x'
Hence, (x@F)T) = x’ is true for all possible values of x on V.
() () Forx F, (x@F)x) = ((F@QFF) = F.
(i) Forx T, (x@F)x) = ((T@FF) = F.
Hence, ((x@F)T) = Fis true for all possible values of x on V.

F, (r@)) = (T@NT) = T
T, (v@x')x) = (F@F)F) = F

x' is true for all possible values of x on V.

(32) (i) Forx
(ii) Forx

Hence, ((x'@x')x’)

x'.
x.

not

(33) () Forx = F,y=F ((x@y)y) = (FQF)F) = F = y.
(i) Forx = Fy =T (x@y)y) = (FRD)T) = T = y.
(iii) Forx = T,y = F, (x@y)y) = (T@F)F) = F = y.
(iv) Forx = T,y =T, (x@y)y) = (T@NT)=T = y.

Hence, ((x@y)y) = y is true for all possible combinational values of x and y on V..

Citalog 123

(3) () Forx = Fy=F (@) = (T@DT) =T = y'.
@i Forx = Fy=T (*@")) = (T@HF) =T =y
(i) Forx = T,y = F, ((**@')y) = (F@D)) = T = y'.
(iv) Forx = T,y=T,((x@)y) = (FRFF) = F = y'.

Hence, ((x'@y’)y’) = y' is true for all possible combinational values of x and yonV.
Theorem 3

Let %tC be a two-valued CITALOG closure with a two-valued CITALOG
operator closure UC[n] and a two-valued CITALOG instruction closure IC[n] de-
fined in terms of n variables x[1], x[2], ..., x[n] on the ivasmode V and two constants
values Fand T of V. A two-valued n-ary CITALOG operator U[n] in UC[n] realizes
all two-valued n-ary logic operators in the Logic Design on the ivasmode V and the

Fundamental Theorems of two-valued CITALOG closure automatically minimizes
themon V.

Proof

(B1) Forn =1,1U= ux[1].G[1] = ux{1] . (x[1]@c[1])c[0]). There are 4 possible
two-valued unary operators in the Logic Design. One can observe them like in Table

1 of the appendix. U[1] realizes and the Fundamental Theorems of two-valued
CITALOG automatically minimizes :

(1) 1U[1] for ¢[0] = F and ([1] = F,
(2) 1U2] for ¢[0] = T and c[1] = F,
(3) 1U[3] for ¢[0) = F and c[1] = T,
(4) 1U4] for ¢[0] = T and [1] = T,

on the ivasmode V.

Because, by substitution and using the Fundamental Theorems of two-valued
CITALOG closure :

(1) 1UM1] = ux{1).((x[1]@F)F) = u&c[l].Fis obtained for c[0] = Fand c[1] = F,

() (WU[l]@F) = F,
(i) (1U[1]@T) = F. ‘
(2) 1U12] = ux[1].((x[1]@F) T) = ux[1].x[1]' is obtained for c[0] = Tand ([1] =

F, and
() (AUR2]J@F) =T,
(i) (1U2]@T) =F.
(3) 1U3] = ux[1].((x[1]@T)F) = ux[1].x[1] is obtained for c[0] = Fand c[1] =

T. nd
(i) (1U[3]@F)
(iiy (1UBl@T)

and

F,
T.

124 Fevzi Unli

(4) 1U[4] = ux{1].((x[1]@T)T) = ux[1].T is obtained for c[0] = c[1] = T, and
() (UM4j@R) =T,
(i) (1U[4]@T) = T.
Hence, the 1U realizes all two-valued unary operators of the Logic Design on the
ivasmode V as one can observe their definition like in Table 1 of the appendix and the
Fundamental Theorems of CITALOG closure automatically minimizes them.

(B2) Forn=2,

2U = ux[2ux[1).G[2] -
ux[2)ux{1].((x[2]@sG[1])G[1])
ux[2ux(1].([2]@((x[1]@cB])c[2D)((x[1]@c[1])cl0])),

and there are 16 possible two-valued binary operators in the Logic Design. One
can observe them like in Table 2 of the appendix. 2U realizes and the Fundamental
Theorems of two-valued CITALOG closure automatically minimizes :

(1) 2U[1] forc[0] = F, ¢[1] = F, c[2] = F, and ¢[3] = F,

(2)2U[2) for c[0] = T, c[2] = F, c[3] = F, and c[4] = F,
(3)2U[3] for c[0] = F, c[1] = T, ¢[3] = F, and c[4] = F,
(42U 4)for cf0] =T, c[1] = T, ¢[2] = F, and c[3] = F,
(S)2U] S] for c[0} = F, c[1] = F, ¢[2] = T, and ¢[3] = F,
(6) 2U[6] for c[0} = T, c[1] = F, ¢[2] = T, and ¢[3] = F,
(72U T} for c[0] = F, c[1} = T, c[2] = T, and ¢[3] = F,
(8 2Uf 8] for c[0] = T, c[1] = T, ¢[2] = T, and ¢f3] = F,
(9)2U[9] for c[0] = F, c[1] = F, c[2] = F, and ¢[3] = T,
(10) 2U[10] for ¢[0] = T, c[1] = F, [2] = F, and [3] = T,
(11) 2UM11] for c[0] = F, c[1] = T, ¢[2] = F, and ¢[3] = T,
(12) 2U[12] for ¢[0] = T, c[1] = T, ¢[2] = F, and ¢[3] = T,
(13) 2U[13] for c[0] = F, c[1] = F, ¢[2] = T, and ([3] = T,
(14) 2U[14]) for c[0] = T, c[l] = F, c[2] = T, and c[3] = T,
(15) 2U[1S]) for c[0) = F, c[1] = T, ¢[2] = T, and ¢[3] = T,
(16) 2UT16] for c[0] = T, c[1] = T, ¢[2] = T, and c[3] = T,

on the ivasmode V.

Because, by substitution and using the Fundamental Theorems of two-valued
CITALOG closure :

(1) 2UN] = wx2]ux{l].((x[2l@((x[1]@F)F))((x{1]@F)F))
= w2ux1).(x[2|@FF) = ux[2]ux{1].F
is obtained for c[0] = ¢[1] = ¢[2] = ¢[3] = F,.and

(i) forx[2]=Fandx[1]=F,
(QUIJ@F)F) = (F@QF)F) = F,

(ii) forx[2] = Fandx[1] =T,
(QUIIJ@AT) = (T@F)F) = F,

(iii) for x[2] = Tand x[1] = F,
(QUII@T)F) = (F@F)F) = F,

Citalog

(iv) forx[2] = Tand x[1] = T,
(QUj@nT) = (T@F)F) = F.
(@) 2U2] = ux2Jux(1].(x[2]@(x{1]@F)F))((x[1}@F)T))
= ux2)ux(1].(x[2]@F)x[1]')
is obtained for c[0] = T, c[1] = ¢[2] = ¢[3] = F, and

(i) (QURI@PP = (FRPT) =T,
(i) (RUR)@FAT) = (T@FT) =F,
(i) (RQU2|@T)F) = ((F@QF)F) =F,
(iv) (QUR2|@NT) = (T@F)F) =F.
() 2U13] = wx2)ux(1].(x[2]@((x[1]@F)))((x[1]@T)F))
ux2Jux(1].((x2]@F)x(1])
is obtained for c[0] = F, c[1] = T, c|2] = ¢[3] = F, and

() (QRUBJ@F)F) = ((F@F)F) =F,
(i) (QUBJ@AT) = (F@RT) =T,
(ii) (RUBl@TF) = (T@F)F) =F,
(iv) (RUB]@NT) = (T@AT) =F.
(4) 2Ul4] = w2ux(1].(2l@(({1]@F)F))((+[1]@T)T))
= ux[2}ux[1).(x[2]@F)T)
is obtained for c[0] = c[1] = T, ¢[2] = ¢[3] = F, and
() (QUAI@PF) = (F@RT) =T,
(i) (QU4@PT) = (F@RT) =T,
(i) (QU[4@DP) = (T@AT) =F,
(iv) (RU4@DT) = (T@F)T) =F.
(5 2U15] = w2]ux(1].((+2]@((x{11@F) D) ((x[1]@F)F))
ux(2]ux(1}.((x[2]@x[1]')F)
is obtained for c[0] = c[1] = F, ¢[2] = T, ¢[3] = F, and
() (QUISI@F)F) = (FQT)F) =F,
(i) (QUS)J@RA)T) = ((F@F)F) =F,
(i) (QUISI@DNP = (T@DP) =T,
(iv) (QUIS]@NT) = (T@FF) =F.
(6) 2Ul6] = wi21].(2l@(C{@A)((I1I@PT))

= wx2]ux{1].(([2]@x[1])x[1])") = wux[2]}ux{1].x[1]

is obtained for c[0] = T, ¢[1] = F, c[2] = T, ¢[3] = F, and

() (QUS|@RF) = (FRT)T) =T,
(i) (QU|@PT) = (FRF)F) =F,
(i) (QU]@DF) = (T@NT) =T,
(iv) (QUB¥l@NT) = (T@PF) =F.

(M) 2U77] = wx2jux(1]((:[2]@(:[1]@F) T))((x[1]@T)F))
ux(2]ux(1].((x[2]@x[1]")x[1])

125

I= o1) = @udlzilng) ()
J= (1g®@1)) = GUdlziln)) (m)
‘1= @9 = GUolzilng) (W
‘I= (LE®D) = @Ud[etlng)) O

pue ‘7 = [¢] 4 = [2] ‘I = [1]o = [0lo 205 paureiqo st

(L(tkoc]0)) [1lxn(zlm =
((.Lu@[IIX))((J(L@[I]x))@[z]x)) [1lxnlzln = [zilnz (T

I= ®1) = UWohtn) ()
d= @E@L) = adl1tlno) (m)
1= L@@ = Wudl11lny)
d= @) = Gudlitlng) ©

pue I = [¢lo 4 =[] & = [t} ‘4 = [0]> 10§ pauresqo st
[l [thn1}m = (x(tx@(c)) [Thnlgln =
(Fual))(EGa@[e) [kl = [11lnz (G1)

L= @or)) = @udlorln?) (A
d= (1®@1)) = @dlotlnz)) (W)
4= o) = WEololng))
1= LHoD) = Gudlotlnz) O

pue I = [g]o 4 = [g]o = [1]o ‘L = [0} 10§ pauresqo st

CIrx(r}®@[e]) [1hmiclm =
(Cudh)Eeali)@izk) iknlchn = [otlnz (o1)

L= J®oI)) = (Ldl6ln7) (a)
- Y= (oL)) = udl6lnT)) (W)
d= (D) = LUdl6n7)) ()
d= D)) = Gudl6lng)

pue °f = [¢]o 4 = [¢P = [1]> = [0]> 203 paureiqo st

W(tx@[z)n) [thnlzjn =
(Uahi)(Eah))Dx) [1lmichn = [6at (6)

A= (LH®L)) = LUDI[8]NT)) (a1
1= Wu®1)) = D[8]n7)) ()
‘I= o) = LEo[8lny) (1)
‘I= (o) = GEolslny) O

pue f = [¢] L = [z] = [1]> = [0} 103 paurerqo st
(k@ [c) [t]mlcln =
(Cuahi(Cuai)@) [tlnlzlm = (8lnz (8)
4 = L®@1)) = LUD[LlNT) (A1)
4 = (JudL) = Gud(Llny) (W)
4 = (LHD@D) = LWUD[LNT) (1
d = dZe) = GUolln) O

pue i = [¢] ‘L = [¢]o L = [1]> 4 = [0]> 105 paurerqo st

njug 1Zas4

9l

Citalog 127

(13) 20113} = wx[2]ux(1].((:[2]@(([1]@D T))((x[1]@F)F))
= ux[2]ux|1].x[2]

is obtained for c[0] = c[1] = F, c[2] = ¢[3] = T, and

(i) (QUIBI@AT) =F,
(i) (QUIBJ@AT) =F,
(iil) (QU[3J@T)F) =T,
(iv) (QUIBJ@D)D) =T.

ux2]ux(1].((x2]@((+[1]@T)))((x[1]1@F) 7))
ux[2Jux{1].((x[2)@T)x[1]')
is obtained for c[0] = T, c[1] = F, c[2] = ¢[3] = T, and

i) (QUM@PF) = ((F@DT) = T,
(i) (QU4]@F)T) = ((FQT)F) = F,
(iii) (QU[14]@T)F) = (T@T)T) = T,
(iv) (2U[14]J@NT) = (T@QT)F) = T.
(15). 2U115] = ux[2Jux{1].((:[2]@((x[1]@T) D)(x[1]@T)F))
ux|2]ux(1].((x[2]@T)x(1])
is obtained for c[0] = F, c[1] = c[2] = ¢[3] = T, and .

(i) (QUISJ@F)F) = ((F@T)F) =F,

(i) (QU[ISJ@FA)T) = ((F@QTT) =T,

(i) (QU[15]@N)F) = (T@T)F) =T,

(iv) (QU[IS]@DT) = (T@T)T) =T.
(16) 20[16] = ux[2jux[1].((x[2]@((x[1]@T)T))((x[1]@T)T))
ux[2ux{1].T

is obtamed for ¢[0] = [1] = c[2] =¢[3] =T, and

() (QU[I6J@F)F) = T,
(i) (QU[16]J@RT) = T,
(ii)) (QUI6]@NF) = T,
(iv) (QU[l6]@NT) =
Hence UJ2] realizes all possible two-valued binary operators of the Logic Design

on the ivasmode V and the Fundamental Theorems of two-valued CITALOG clo-
sure automatically self minimizes them on the V.

(14) 2U114]

Now one can complete the proof of the Theorem 3 as follow for any Ufn] by induc-
tion :

(I) Assume, fer all ¢[i] in G[n — 1], we define sG[n - 1] = c[i}Sclifl@G[n - 1],
it =i+ 2" and G[n] = ((x[n]@sGln -]) G[n - 1]) that Uln - 1] = ux|n - 1] ...
ux[2]Jux[1].G[n - 1] in UC[n] realizes all two-valued (n — 1)-ary operators and the
Fundamental Théorems of two-valued CITALOG closure automatically self
minimizes them is true for n = 2. Then. by induction on nin P, ux[a] ... ux[2]ux[1}.
G[n] in UCIn] realizes all two-valued n-ary operators for G = ((x[n]@sG[n - 1))G

128 Fevzi Unlii

[n — 1]) and the Fundamental Theorems of two-valued CITALOG closure automat-
ically minimizes them is also true. Because the rth two-valued n-ary operators in the
Logic Design has a truth table like Table 1, where each c[i] in the column nU[r] has a
constant value in the two-valued ivasmode V= { T, F}forrisin{1,2, ...,2?": nisin
Plandiisin{0,1,2,3,...,27 — 1}. Itis true that the first 27 - states in the Table 1
are realizable by ux[n — 1] ... ux[2]ux[1]. (F@sG[n — 1])G[n - 1]) and the next 2" -1
states are realizable by ux[n - 1] ... ux[2Jux[1]. ((T@sG{n - 1])G|[r - 1]) implies
that ux[n - 1] ... ux[2Jux[1]. ((x[n]@sG[n - 1])G[n - 1)) realizes all states of the
truth table appearing in Table 1 and the Fundamental Theorems of two-valued
CITALOG closure automatically self minimizes them. Hence for all nin P a two-val-
ued CITALOG closure %?C with a two-valued CITALOG operator closure UC[n]
and a two-valued CITALOG instruction closure IC[n] realizes all two-valued n-ary
logic operators and the Fundamental Theorems of two-valued CITALOG closure
automatically self minimizes them.

Definition 2
(a) G[n] = ((x[n]@sG[n - 1])G[n - 1]) is called a two-valued n-ary packed
TASIM body.

(b) The rules of expansion/construction of a two-valued CITALOG closure %¢C
in Theorem 3 are termed as the self minimizing rules of the two-valued CITALOG
closure.

TABLE 1. The truth table for the rth operator in nUC

x{n] x[2]x{1] nU[r]
F FF [0])
F FT 1]
> isrealizable by
(F@sG[n - 1))G[n - 1))
F TT c2n-1 -] J
T FF 2") A
4 isrealizableby -
((T@sG[n -1])G[n - 1))
T TT 2" -1] J
Corollary 1

A TASIM closure tC which covers a two-valued CITALOG closure %!C realizes
and automatically minimizes any arbitrarily given two-valued logic function in the
Logic Design.

Corollary 2

If x and y are two two-valued variables on the ivasmode V ={ T, F}in a two-valued

Citalog 129

CITALOG closure %!tC, and x’ and y’ are their complements on V then %¢C has the
following partitions of semantic equality for logical software minimizing instructions
onV:

(1) F = (x@F)F) = (x@F)x) = ((x@x)F
= ((x@x")x) = ((x*'@FF) = ((*'@F)x’)
= (@@x)F) = ((x'@x)x'),

2 T = (¢c@NT) = (x@T)x') = (x@x)T
= (x@x')x) = ((x@NT) = (x'@7)x)
= (*@T7) = ((x'@x)x),

(3) x = (x@T)F) = ((x@T)x) = ((x@x)F
= (x@x)x) = ((x'@F)T) = ((x*'@F)x)
= (@@xT) = ((x'@x)x),

@ x' = (x@F)T) = (x@F)x') = ((x@x")T
= (x@x")x") = (*'@T)F) = ('@T)x’)
= (x@x")F) = ((x’@x")x'),

5)y = (x@y) = ((*'@y)y),

6 y = (x@y)y) = (x"@y)y).

Applications
Example 1

If,

n=1

and

(@) V={T:=ux[1]ux[2].x[1], F : = ux[1]ux[2]. x[2] } is a 2-valued ivasmode of
the 2-valued CITALOG closure,
(b) x[1]isa2-valued CITALOG variable and G[1]}isa unary TASIM instruction,

then,
one may determine G[1] = ((x[1]@c[1}) ¢[0]), forn = 1;

else, if

x[1], x[2], ..., x[n] are 2-valued CITALOG variables and G{n]is an 2-valued n-ary
packed TASIM body.
Then

one may determine G[n] = ((x[n]@sGln — 1]) G[n - 1]), forn = 2,
where

sG[n - 1] = c[i]Sc[i]@G[n - 1), ii =i + 27-1.
Hence we have :

() G[1] = ((x[1]@c[1])c[0]), forn = 1,
(ii) G[2] = (([1]@sG1DG1]), forn =2,

130 Fevzi Unli

where

sG[1] = di]Sdifj@((x[1]@c[1])c[0]) = ((x[1]@c[3])c[2]), forii=i+ 21 =i+ 2,
implies that

Gl2]
and

U2] = wx|2]ux]1].G[2]
ux[2Jux(1].(21(G[1]@c3])c2D)(([1]@¢[1])c[0D)) is a 2-valued 2-ary
CITALOG operator.

(2 (G1]@c3])el2D) (1] @c[1])e[0])),

This operator realizes all binary and 2-valued logic operator and functions in the
Logic Design.

Example 2

By the same derivation method in Example 1 :

(1) U3} = ux[3Jux[2]ux[1].G[3]
ux[3Jux[2]ux(1].((Bl@((x[2]@((=[1]@c[7]) * c[6])))
12 34 56 6 543

(1@cI5De[4)))((x21@((x[1]@c[3])c[2]))
a5 5 43223 45 5 43

(Gl1@d1])c[0]))
4 321

34

is a 2-valued 3-ary CITALOG operator. It realizes all three input and one output
logic gates or logic networks in the Logic Design.

(i) Ul4] = ux[4]ux[3]ux(2]ux{1].G[4]

where
Gl4] = ((4@((x[B]@((x[2]@((>[1]@c[15])c[14]))((x[1]@c[13])c[12])))
12 34 56 78 8 7667 7 654
((2]@((x[1]e11])c[10D) ((x[1]@c[D)c[8D)) ((x[3]@((x[2] @
45 67 7 6556 6 543223 45

(1@ el6D)((<(e[S 4D((x2]@ ((x[1]@c[3])c[2]))
67 7 6556 6 54334 56 6 54
((x[1]@c[1])c[0]))))

a2

45 5

is a two-valued 4-ary CITALOG operator. It realizes all four input and one output
logic gates or logic networks in the Logic Design.

Citalog 131

Example 3

Let n = 3, a2-valued CITALOG closure realizes all 2-valued 3-ary logic operators
and functions in the Logic Design since we can write a TASIM program for realizing
and automatically minimizing any 3-ary Boolean function in the Logic Design. For
example, let us realize f = f(x[3], x[2], x[1]) = [IM(0, 2, 4,6,7) = MO M2 MA M6 M7,
where ‘I’ is representing cummulative ‘“AND’ operator (Table 2) :

Step 1
f = wxBlux2ux1].((x[31@((x[2)@((x[1]@c[7]) c[6D)((x{1]@c[5])c[4D)))
12 34 56 6 5445 5 432

((2j@(({1]@c[3])cl2])((x[1]@c[1])c[0])))
23 45 5 4334 4 321
= ux3Jux[2]ux(1].((xB]@((x[2]@((x[1]@0)0)((x[1]@1)0)))
12 34 56 6 545 543
((2]@((x[1]@1)0))((x[1]@1)0)))
23 45 5 4334 4 32

TABLE 2. The truth table for f = I1 M(0, 2, 4, 6, 7).
dN x[3]x2]+[1] f(x43], x{2], x{1])

0 000 0 do]

001 1 d1
2 010 0 2
3 011 1 3
4 100 0 4]
5 101 1 5]
6 110 0 6]
7 111 0 (7]

Step 2
If two-valued CITALOG closure automatically minimizes it then we obtain

f = wxBlux[2]ux(1].(x3]@((x[2]@0)x[1])) (2] @x[1])x{1]))
12 34 4 323 302

= wx[3Jux[2]ux{1]. (x[3]@((x[21@0)x[1]))x{1])
12 34 4 32 1

Step 3
If we process f for x[3] = 0 and x{2] = x[1] = 1, we obtain :

12 34 4 32 1
(F@0)1)1) =(((ux[3Jux[2]ux{1]. (x[3]@((x[2]@0)x[1]))x(1]) 0)1)1)
123 321 1B 45 67 7 65 4321

132 Fevzi Unlii

= ((0((1@0)1))1)
12 34 4321
= ((0@0)1)
12 21
=1
Example 4
Let
G = ((X[3]@((x[2]@((x[1]@((x{O]@a[IS])a[14]))((x[0]@0[13])a[12])))

7 654

((x[1]@((X[0]@allll)a[w]))((X[Ol@a[9])a [81)))

5432

(Rl@(({1]@((x[0]@a[7])al6D)((x{0]@a[5])al4]))((x[1]@
23 45 67 7 6556 6 54334 |
((x[0]@a[3])al2]))((x[0]@a[1])a[0])))),
56 6 5445 54321

then
AU = ux[3]ux[2)ux[1]ux[0].G

realizes all 2-valued 4-ary logic functions in duat space for the CITALOG variables
x[0], x[1], x[2], x[4] and two-valued CITALOG constants a[0], a[1], ..., a[15]. For
example, if one wishes to realize

= 11M(©0,1,2,3,5,7,8,9,10, 11, 13, 15)
in dual space :

f= ux[3]uX[2]uX[1]ux[0]-fgx[3]@§£X[2]@ggxlll@

l= x[0]>| |« x{ 0]}
((x{0]@1)0))((x[0]@1)0)))
78 8 7667 7 654

|l 1 > |1 =)

(({1]@((x[0]@1)1))((x[0] @1)1))))
as 67 7 6556 6 5432

l—x[0]-] |« x[0] —|
((x[2]((x[1]@((x[0]@1)0))((x[0]@1)0))

7 6556 543

=1 S|l 1 >

((x[I]@((x{Ol@1)1))((X[0]@1)1))))

6 5445 5 4321

Citalog 133

| 0] —]

f= ux[3]ux[2]ux[1]ux[0]-gxli”_]@gx[ﬂ@ggxlll@xlolgxm]z‘)‘

|<—— 1 —>|

((+[1]@1)1)))
4 5 432

l— x[0] =] |« 1 =]

(2l@((x[1]@x[0)x[0])) ((x[1]@1)1)))
23 a5 5 4334 43

l« A || A -

f = ux3] ux2] wx[1] ux[0].(x3]@ ((x[2]@x[0])1)) ((x[2]@x[0])1))
12 34 4203 32

f= ux[3]ux[2]ux[1] ux[O].((x[Z]@ux[Oj)l),in dual space.

TABLE 3a. The truth table of f.

Now we may test this self minimizing function by the truth table of f given in Table
3a and compare it by the Boolean function that one can obtain from the K-map ap-
pearing in Table 3b.

[= ux[3Jux{2]ux[1}ux[0].((x[2]@x[0])1) — f = x[2]x[0]
= f = x[2] + x[0].
Conclusion

In this paper, we have developed a new technique for two-valued logic software
minimizing information processing algorithms as TASIM programs in the two-val-
ued CITALOG closure for realizing two-valued logic operators and functions of any

134 Fevzi Unlii

finite number of operands and any finite number of variables. It has a power of self
minimizing automatically two-valued logic functions with any finite number of vari-
ables in any two-valued logic. This may help to create a new technology in the Logic
Design and also may produce software minimization techniques for realizing al-
gorithms and data structures. In this line, the author is studying on (a) a two-valued
minimizing CITALOG virtual machine as a software structure for minimizing any fi-
nite two-valued logic function, (b) a minimizing TASIM virtual machine for
minimizing software structures in TASIM.

The self software minimizing power that we have coded into the instructional in-
formation processing structures of the two-valued CITALOG closure is a milestone
in the Logic Design to point out the way of producing a new technology for optimal
hardware or optimal software system development.

TABLE 3b. K-map of f.

x[3]x[2]
x[1]x[0] 00 01 11 10
00 1 0 0 1
01 1 1 1 1
11 1] 1] 1] 1
10 1 0 0 1
K-map
References

(1] Denning, P.J., Dennis, J.B. and Qualitz, J.E., Machines, Languages, and Computation, Prentice
Hall, Inc., Engelwood Cliffs, New Jersey (1978).

[2] Onli, F., Theoretical lambda-TASIM, Atatiirk University, Erzurum, Pub. No. 472, 40 p. (1976).

[3] Reth, C.H., Fundamentals of Logic Design, 3rd ed., West Publishing Company, New York (1985).

[4] Undii, F., 6-TASIM, 6th National Congress of Operation Research, 25-27 June, Hacettepe University,
Ankara, unpublished (1980).

[5] Mirasyedioglu, S., Operator Classification in lambda-TASIM by a Logical Evaluation Process, Ph.D.
Thesis, Ataturk University, Erzurum (1979).

[6] Albayrak, L., Derivation of Some Algebraic Structures in a lambda-Culture, Ph.D. Thesis, Depart-
ment of Mathematics, Ege University, Izmir (1982).

[7] Unli, F., A TASIM Logic Realization of Boolean Algebra, DIRASAT: A Research Journal, the Uni-
versity of Jordan, XXII(7): 67-76 (1986).

[8] Unli, F., TASIM Logic Realizations in the Logic Design, DIRASAT: A Learned Research Journal,
the University of Jordan, XIV(12): 61-80 (1987).

[9] Pratt, T.W., Programming Languages: Design and Implementation, (Second Edition), Prentice Hall
International, Inc., Engelwood Cliffs, New Jersey (1984).

Citalog

Appendix
The Truth Tables for the Unary and Binary Logic Operators

135

This appendix is for introducing the truth tables of unary and binary operators in
the Logic Design. For this reason Table 1 contains the four possible two-valued
operators and Table 2 contains the sixteen possible two-valued binary operators.

Where we use x[i] = xi, c[k] = ck, 1U[j] = 1Uj and 2U[k] = 2Uk.

TABLE 1. The truth table for the two-valued unary logic operators in the Logic Design.

x1 101 102 1U3 1U4 c
F F T F T 0
T F F T T cl

TABLE 2. The truth table for the two-valued binary logic operators in the Logic Design.

x2x1 201 2U2 2U3 2U4 2U5 2U6 2U7 2U8 2U9 2UA 2UB 2UC 2UD 2UE 2UF2UG ¢
FF F T F T F T F T F T F T F T F T o
FT F F T T F F T T F F T T F F T T
TF F F F F T T T T F F F F T T T T ¢
TT F F F F F F F F T T T T T T T T &3

1U1: Unary contradiction, 2UB Binary identity x1,

102 . » hegation, 2UC » conditional,

1U3 ,» identity, 2UD » identity of x2,

1U4 . » tautology, 2UE ,» converse,

2U1: Binary contradiction, 2UF ,» inclusive OR,

202 . . NOR, 2UG » tautology,

2U3: » negation of converse, A 10,

204 . » negation,ofx2, B 11,

205 » negation of conditional, C 12,

206 : negation of x1, D 13,

2U7 : . exclusive OR, E 14,

2U8: . NAND, F 15,

209 : . AND, G

2UA biconditional,

136

Fevzi Unlii

TP
o5 lazel) Lyaaall JalSCl| GYRY)

- gl et 55
ﬁ}d\%&d&k\h\?—whl\gls—o\.,ﬂ\;\ e
gt iyl Al —ta o

S (@) ool Glaiall bgrall JolSll GRRN (s ghas Eom Sl 1in yym
Zsdll L3 gy Zeabaie SMte sl2] U] el e g . guall ki)
i 4315 LAL eaabadll slg] (Sl e s S L ol B3l

- hll et 3 Y SLgl

